Oxidation state of cross-over manganese species on the graphite electrode of lithium-ion cells.

نویسندگان

  • Sanketh R Gowda
  • Kevin G Gallagher
  • Jason R Croy
  • Martin Bettge
  • Michael M Thackeray
  • Mahalingam Balasubramanian
چکیده

It is well known that Li-ion cells containing manganese oxide-based positive electrodes and graphite-based negative electrodes suffer accelerated capacity fade, which has been attributed to the deposition of dissolved manganese on the graphite electrodes during electrochemical cell cycling. However, the reasons for the accelerated capacity fade are still unclear. This stems, in part, from conflicting reports of the oxidation state of the manganese species in the negative electrode. In this communication, the oxidation state of manganese deposited on graphite electrodes has been probed by X-ray absorption near edge spectroscopy (XANES). The XANES features confirm, unequivocally, the presence of fully reduced manganese (Mn(0)) on the surface of graphite particles. The deposition of Mn(0) on the graphite negative electrode acts as a starting point to understand the consequent electrochemical behavior of these electrodes; possible reasons for the degradation of cell performance are proposed and discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of Mn2+ in Pharmaceutical Supplements by a Novel Coated Graphite Electrode Based on Zolpidem as a Neutral Ion Carrier

Manganese plays a key role in the health of human beings therefore, its determination is very important in medical fields. In this regards, a novel coated graphite electrode was constructed for determination of manganese (II) by using zolpidem as an ionophore, for the first time. The best performance was obtained of the membrane composition of PVC (32%), Potassium tetrakis (4-chlorophenyl) bora...

متن کامل

Initial Discharge Capacity of Manganese Cobaltite as Anode Material for Lithium Ion Batteries

Nanostructured manganese cobalt oxide spinel (MnCo2O4) are prepared by co-precipitation method and calcined at 650 and 750°C. Morphological studies show that by increasing the calcination temperature from 650 to 750°C, morphology of the particles changes from quasi-plate to polyhedral. The MnCo2O4 calcined at 650°C could deliver an initial discharge capacity of 1438 mAh g-1 under current densit...

متن کامل

Effect of Porosity on the Thick Electrodes for High Energy Density Lithium Ion Batteries for Stationary Applications

A series of 250–350 μm-thick single-sided lithium ion cell graphite anodes and lithium nickel manganese cobalt oxide (NMC) cathodes with constant area weight, but varying porosity were prepared. Over this wide thickness range, micron-sized carbon fibers were used to stabilize the electrode structure and to improve electrode kinetics. By choosing the proper porosities for the anode and cathode, ...

متن کامل

Electrode Materials for Lithium Ion Batteries: A Review

Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...

متن کامل

Electrocatalytic determination of free glycerol in biodiesel at nano nickel modified graphite electrode

For the first time this study reported the success of using nanocrystalline hexagonal close-packed (hcp) nickel (Ni) modified composite graphite (CG) electrode (hcp-nano Ni/CG) for the electrocatalytic oxidation of glycerol in alkaline medium (0.1 M KOH). The hcp-nano Ni/CG electrode had an improve response and specificity on the electrocatalytic oxidation of glycerol over the bare CG. The elec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 16 15  شماره 

صفحات  -

تاریخ انتشار 2014